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Abstract 

This paper examines simultaneous multithreading, a technique per- 
mitting several independent threads to issue instructions to a su- 
perscalar's multiple functional units in a single cycle. We present 
several models of simultaneous multithreading and compare them 
with altemative organizations: a wide superscalar, a fine-grain mul- 
tithreaded processor, and single-chip, multiple-issue multiprocess- 
ing architectures. Our results show that both (single-threaded) su- 
perscalar and fine-grain multithreaded architectures are limited in 
their ability to utilize the resources of a wide-issue processor. Si- 
multaneous multithreading has the potential to achieve 4 times the 
throughput of a superscalar, and double that of fine-grain multi- 
threading. We evaluate several cache configurations made possible 
by this type of organization and evaluate tradeoffs between them. 
We also show that simultaneous multithreading is an attractive alter- 
native to single-chip multiprocessors; simultaneous multithreaded 
processors with a variety of organizations outperform corresponding 
conventional multiprocessors with similar execution resources. 

While simultaneous multithreading has excellent potential to in- 
crease processor utilization, it can add substantial complexity to 
the design. We examine many of these complexities and evaluate 
alternative organizations in the design space. 

1 Introduction 

This paper examines simultaneous multithreading (SM), a technique 
that permits several independent threads to issue to multiple func- 
tional units each cycle. In the most general case, the binding between 
thread and functional unit is completely dynamic. The objective of 
SM is to substantially increase processor utilization in the face of 
both long memory latencies and limited available parallelism per 
thread. Simultaneous multithreading combines the multiple-issue- 
per-instruction features of modem superscalar processors with the 
latency-hiding ability of multithreaded architectures. It also inherits 
numerous design challenges from these architectures, e.g., achiev- 
ing high register file bandwidth, supporting high memory access 
demands, meeting large forwarding requirements, and scheduling 
instructions onto functional units. In this paper, we ( I )  introduce 
several SM models, most of which limit key aspects of the complex- 
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ity of such a machine, (2) evaluate the performance of those models 
relative to superscalar and fine-grain multithreading, (3) show how 
to tune the cache hierarchy for SM processors, and (4) demonstrate 
the potential for performance and real-estate advantages of SM ar- 
chitectures over small-scale, on-chip multiprocessors. 

Current microprocessors employ various techniques to increase 
parallelism and processor utilization; however, each technique has 
its limits. For example, modem superscalars, such as the DEC 
Alpha 21 164 [I  11, PowerPC 604 [9], MIPS RlOOOO [24], Sun U1- 
traSparc [25], and HP PA-8000 [26] issue up to four instructions per 
cycle from a single thread. Multiple instruction issue has the poten- 
tial to increase performance, but is ultimately limited by instruction 
dependencies (i.e., the available parallelism) and long-latency op- 
erations within the single executing thread. The effects of these are 
shown as horizontal waste and vertical waste in Figure 1. Multi- 
threaded architectures, on the other hand, such as HEP [28], Tera [3], 
MASA [ 151 and Alewife [2] employ multiple threads with fast con- 
text switch between threads. Traditional multithreading hides mem- 
ory and functional unit latencies, attacking vertical waste. In any one 
cycle, though, these architectures issue instructions from only one 
thread. The technique is thus limited by the amount of parallelism 
that can be found in a single thread in a single cycle. And as issue 
width increases, the ability of traditional multithreading to utilize 
processor resources will decrease. Simultaneous multithreading, in 
contrast, attacks both horizontal and vertical waste 

This study evaluates the potential improvement, relative to wide 
superscalar architectures and conventional multithreaded architec- 
tures, of various simultaneous multithreading models. To place our 
evaluation in the context of modem superscalar processors, we simu- 
latea basearchitecturederivedfrom the 300MHzAlpha21164[11], 
enhanced for wider superscaIar execution; our SM architectures are 
extensions of that basic design. Since code scheduling is crucial 
on wide superscalars, we generate code using the state-of-the-art 
Multiflow trace scheduling compiler [20]. 

Our results show the limits of superscalar execution and tradi- 
tional multithreading to increase instruction throughput in future 
processors. For example, we show that ( I )  even an 8-issue super- 
scalar architecture fails to sustain 1.5 instructions per cycle, and (2) 
a fine-grain multithreaded processor (capable of switching contexts 
every cycle at no cost)utilizes only about40% of a wide superscalar, 
regardless of the number of threads. Simultaneous multithreading, 
on the other hand, provides significant performance improvements 
in instruction throughput, and is only limited by the issue bandwidth 
of the processor. 

A more traditional means of achieving parallelism is the con- 
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Figure 1: Empty issue slots can be defined as either vertical 
waste or horizontal waste. Vertical waste is introduced when 
the processor issues no instructions in a cycle, horizontal waste 
when not all issue slots can be filled in a cycle. Superscalar 
execution (as opposed to single-issue execution) both introduces 
horizontal waste and increases the amount of vertical waste. 

ventional multiprocessor. As chip densities increase, single-chip 
multiprocessors will become a viable design option [7 ] .  The simul- 
taneous multithreaded processor and the single-chip multiprocessor 
are two close organizational altematives for increasing on-chip exe- 
cution resources. We compare these two approaches and show that 
simultaneous multithreading is potentially superior to multiprocess- 
ing in its ability to utilize processorresources. For example, a single 
simultaneous multithreaded processor with 10 functional units out- 
performs by 24% a conventional 8-processor multiprocessor with a 
total of 32 functional units, when they have equal issue bandwidth. 

F:or this study we have speculated on the pipeline structure for 
a simultaneous multithreaded processor, since an implementation 
does not yet exist. Our architecture may therefore be optimistic in 
two respects: first, in the number of pipeline stages required for 
instruction issue; second, in the data cache access time (or load de- 
lay cycles) for a shared cache, which affects our comparisons with 
single-chip multiprocessors. The likely magnitude of these effects 
is discussed in Sections 2.1 and 6, respectively. Our results thus 
serve, at the least, as an upper bound to simultaneous multithread- 
ing performance, given the other constraints of our architecture. 
Real implementations may see reduced performance due to various 
design tradeoffs; we intend to explore these implementation issues 
in future work. 

Previous studies have examined architectures that exhibit simul- 
taneous multithreading through various combinations of VLIW, su- 
perscalar, and multithreading features, both analytically [34] and 
through simulation [16, 17, 6, 231; we discuss these in detail in 
Section 7. Our work differs and extends from that work in multiple 
respects: (1) the methodology, including the accuracy and detail of 
our simulations, the base architecture we use for comparison, the 
workload, and the wide-issue compiler optimization and scheduling 
technology; (2) the variety of SM models we simulate; (3) our anal- 
ysis of cache interactions with simultaneous multithreading; and 
finally, (4) in our comparison and evaluation of multiprocessing and 
simultaneous multithreading. 

This paper is organized as follows. Section 2 defines in detail 
our basic machine model, the workloads that we measure, and the 
simulation environment that we constructed. Section 3 evaluates 

the performancle of a single-threaded superscalar architecture; :it 
provides motivation for the simultaneous multithreaded approach. 
Section 4 presents the performance of a range of SM architectures 
and compares them to the superscalar architecture, as well as a 
fine-grain multithreaded processor. Section 5 explores the effect of 
cache design altematives on the performance of simultaneous multi- 
threading. Section 6 compares the SM approach with conventional 
multiprocessor architectures. We discuss related work in Section 7, 
and summarize our results in Section 8. 

2 Methodology 

Our goal is to evaluate several architectural alternatives as defined 
in the previous section: wide superscalars, traditional multithreaded 
processors, simultaneous multithreaded processors, and small-scale 
multiple-issue multiprocessors. To do this, we have developed a 
simulation environment that defines an implementation of a simul- 
taneous multithreaded architecture; that architecture is a straight- 
forward extension of next-generation wide superscalar processors, 
running a real multiprogrammed workload that is highly optimized 
for ex'ecution on our target machine. 

2.1 Simulation Environment 

Our simulator u.ses emulation-based instruction-level simulation, 
similar to Tango1 [8] and g88 [4]. Like g88, it features caching of 
partially decoded instructions for fast emulated execution. 

Our simulator models the execution pipelines, the memory hier- 
archy (both in teims of hit rates and bandwidths), the TLBs, and the 
branch prediction logic of a wide superscalar processor. It is based 
on the Alpha AXP 21 164, augmented first for wider superscalar ex- 
ecution and then for multithreaded execution. The model deviates 
from the Alpha in some respects to support increased single-stream 
parallelism, such as more flexible instruction issue, improved branch 
prediction, and larger, higher-bandwidth caches. 

The typical simulated configuration contains 10 functional units 
of four types (four integer, two floating point, three load/store and 
1 branch) and a rnaximum issue rate of 8 instructions per cycle. We 
assume that all functional units are completely pipelined. Table 1 
shows the instruction latencies used in the simulations, which are 
derive'd from the Alpha 21 164. 

Instruction Class 
integer multiply 
conditional move 
compare 
all other integer 
FP divide 
all other FP 
load (L1 cache hit, no bank conflicts) 
load (L2 {cache hit) 
load (L3 cache hit) 
load (memory) 
control hazard (br or jmp predicted) 
control hazard (br or jmp mispredicted) 

Latency 
8,16 

2 
0 
1 

17,30 
4 
2 
8 
14 
50 
1 
6 

Table 1: Simulated instruction latencies 

39 3 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 11:09 from IEEE Xplore.  Restrictions apply.



We assume first- and second-level on-chip caches considerably 
larger than on the Alpha, for two reasons. First, multithreading 
puts a larger strain on the cache subsystem, and second, we expect 
larger on-chip caches to be common in the same time-frame that 
simultaneous multithreading becomes viable. We also ran simu- 
lations with caches closer to current processors-we discuss these 
experiments as appropriate, but do not show any results. The caches 
(Table 2) are multi-ported by interleaving them into banks, similar 
to the design of Sohi andFranklin [30]. An instruction cache access 
occurs whenever the program counter crosses a 32-byte boundary; 
otherwise, the instruction is fetched from the prefetch buffer. We 
model lockup-free caches and TLBs. TLB misses require two full 
memory accesses and no execution resources. 

I ]  ICache I DCache I L2Cache I L3Cache 1 
Size 
Assoc 4-way 
Line Size 
Banks 
Transfer 

Table 2: Details of the cache hierarchy 

We support limited dynamic execution. Dependence-freeinstruc- 
tions are issued in-order to an eight-instruction-per-thread schedul- 
ing window; from there, instructions can be scheduled onto func- 
tional units out of order, depending on functional unit availability. 
Instructions not scheduled due to functional unit availability have 
priority in the next cycle. We complement this straightforward issue 
model with the use of state-of-the-art static scheduling, using the 
Multiflow trace scheduling compiler [20]. This reduces the benefits 
that might be gained by full dynamic execution, thus eliminating 
a great deal of complexity (e.g., we don’t need register renaming 
unless we need precise exceptions, and we can use a simple l-bit- 
per-register scoreboarding scheme) in the replicated register sets 
and fetch/decode pipes. 

A 2048-entry, direct-mapped, 2-bit branch prediction history ta- 
ble [29] supports branch prediction; the table improves coverage 
of branch addresses relative to the Alpha (with an 8 KB I cache), 
which only stores prediction information for branches that remain 
in the I cache. Conflicts in the table are not resolved. To predict re- 
tum destinations, we use a 12-entry retum stack like the 21 164 (one 
retum stack per hardware context). Our compiler does not support 
Alpha-style hints for computed jumps; we simulate the effect with 
a 32-entry jump table, which records the last jumped-to destination 
from a particular address. 

For our multithreaded experiments, we assume support is added 
for up to eight hardware contexts. We support several models of 
simultaneous multithreaded execution, as discussedin Section 4. In 
most of our experiments instructions are scheduled in a strict prior- 
ity order, i.e., context 0 can schedule instructions onto any available 
functional unit, context 1 can schedule onto any unit unutilized by 
context 0, etc. Our experiments show that the overall instruction 
throughput of this scheme and a completely fair scheme are virtually 
identical for most of our execution models; only the relative speeds 
of the different threads change. The results from the priority scheme 
present us with some analytical advantages, as will be seen in Sec- 

tion 4, and the performance of the fair scheme can be extrapolated 
from the priority scheme results. 

We do not assume any changes to the basic pipeline to accommo- 
date simultaneous multithreading. The Alpha devotes a full pipeline 
stage to arrange instructions for issue and another to issue. If simul- 
taneous multithreading requires more than two pipeline stages for 
instruction scheduling, the primary effect would be an increase in 
the misprediction penalty. We have run experiments that show that 
a one-cycle increase in the misprediction penalty would have less 
than a 1 %impact on instruction throughput in single-threaded mode. 
With 8 threads, where throughput is more tolerant of misprediction 
delays, the impact was less than .5%. 

2.2 Workload 

Our workload is the SPEC92 benchmark suite [lo]. To gauge the 
raw instruction throughput achievable by multithreaded superscalar 
processors, we chose uniprocessor applications, assigning a distinct 
program to each thread. This models a parallel workload achieved 
by multiprogramming rather than parallel processing. In this way, 
throughput results are not affected by synchronization delays, ineffi- 
cient parallelization, etc., effects that would make it more difficult to 
see the performance impact of simultaneous multithreading alone. 

In the single-thread experiments, all of the benchmarks are run 
to completion using the default data set(s) specified by SPEC. The 
multithreaded experiments are more complex; to reduce the effect 
of benchmark difference, a single data point is composed of B 
runs, each T * 500 million instructions in length, where T is the 
number of threads and B is the number of benchmarks. Each of 
the B runs uses a different ordering of the benchmarks, such that 
each benchmark is run once in each priority position. To limit the 
number of permutations, we use a subset of the benchmarks equal 
to the maximum number of threads (8). 

We compile each program with the Multiflow trace scheduling 
compiler, modified to produce Alpha code scheduled for our target 
machine. The applications were each compiled with several differ- 
ent compiler options; the executable with the lowest single-thread 
execution time on our target hardware was used for all experiments. 
By maximizing single-thread parallelism through our compilation 
system, we avoid overstating the increases in parallelism achieved 
with simultaneous multithreading. 

3 Superscalar Bottlenecks: Where Have All 
the Cycles Gone? 

This section provides motivation for simultaneous multithreading 
by exposing the limits of wide superscalar execution, identifying 
the sources of those limitations, and bounding the potential im- 
provement possible from specific latency-hiding techniques. 

Using the base single-hardware-context machine, we measured 
the issue utilization, i.e., the percentage of issue slots that are filled 
each cycle, for most of the SPEC benchmarks. We also recorded the 
cause of each empty issue slot. For example, if the next instruction 
cannot be scheduled in the same cycle as the current instruction, 
then the remaining issue slots this cycle, as well as all issue slots 
for idle cycles between the execution of the current instruction and 
the next (delayed) instruction, are assigned to the cause of the delay. 
When there are overlapping causes, all cycles are assigned to the 
cause that delays the instruction the most; if the delays are additive, 
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Figure 2: Sources of all unused issue cycles in an 8-issue superscalar processor. Processor busy represents the utilized issue slots; all 
others represent wasted issue slots. 

such as an I tlb miss and an I cache miss, the wasted cycles are 
divided up appropriately. Table 3 specifies all possible sources 
of wasted cycles in our model, and some of the latency-hiding or 
latency-reducing techniques that might apply to them. Previous 
work [32, 5 ,  IS], in contrast, quantified some of these same effects 
by removing barriers to parallelism and measuring the resulting 
increases in performance. 

Our results, shown in Figure 2, demonstrate that the functional 
units of our wide superscalar processor are highly underutilized. 
From the composite results bar on the far right, we see a utilization 
of only 19% (the “processor busy” component of the composite bar 
of Figure 2), which represents an average execution of less than 1.5 
instructions per cycle on our 8-issue machine. 

These results also indicate that there is no dominant source of 
wasted issue bandwidth. Although there are dominant items in 
individual applications (e.g., mdljsp2, swm, fpppp), the dominant 
cause is different in each case. In the composite results we see that 
the largest cause (short FP dependences) is responsible for 37% of 
the issue bandwidth, but there are six other causes that account for 

at least 4.5% of wasted cycles. Even completely eliminating any 
one factor will nlot necessarily improve performance to the degree 
that thiis graph might imply, because many of the causes overlap. 

Not only is thixe no dominant cause of wasted cycles - there 
appears to be no dlominant solution. It is thus unlikely that any single 
latency-tolerating technique will produce a dramatic increase in the 
perfonnance of these programs if it only attacks specific types of 
latencies. Instruction scheduling targets several important segments 
of the wasted issue bandwidth, but we expect that our compiler 
has already achijeved most of the available gains in that regard. 
Current trends have been to devote increasingly larger amounts of 
on-chip area to caches, yet even if memory latencies are completely 
eliminated, we cannot achieve 40% utilization of this processor. If 
specific latency-hiding techniques are limited, then any dramatic 
increase in parallelism needs to come from a general latency-hiding 
solution, of which multithreading is an example. The different types 
of multithreading have the potential to hide all sources of latency, 
but to different degrees. 

This becomes clearer if we classify wasted cycles as either vertical 
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Source of Wasted 
Issue Slots 

waste (completely idle cycles) or horizontal waste (unused issue 
slots in a non-idle cycle), as shown previously in Figure 1. In our 
measurements, 61% of the wasted cycles are vertical waste, the 
remainder are horizontal waste. Traditional multithreading (coarse- 
grain or fine-grain) can fill cycles that contribute to vertical waste. 
Doing so, however, recovers only a fraction of the vertical waste; 
because of the inability of a single thread to completely fill the issue 
slots each cycle, traditional multithreading converts much of the 
vertical waste to horizontal waste, rather than eliminating it. 

Simultaneous multithreading has the potential to recover all issue 
slots lost to both horizontal and vertical waste. The next section 
provides details on how effectively it does so. 

Possible Latency-Hiding or Latency-Reducing Technique 

4 Simultaneous Multithreading 

This section presents performance results for simultaneous multi- 
threaded processors. We begin by defining several machine models 
for simultaneous multithreading, spanning a range of hardware com- 
plexities. We then show that simultaneous multithreading provides 
significant performance improvement over both single-thread su- 
perscalar and fine-grain multithreaded processors, both in the limit, 
and also under less ambitious hardware assumptions. 

4.1 The Machine Models 

The following models reflect several possible design choices for a 
combined multithreaded, superscalar processor. The models differ 
in how threads can use issue slots and functional units each cycle: 
in all cases, however, the basic machine is a wide superscalar with 
10 functional units capable of issuing 8 instructions per cycle (the 
same core machine as Section 3). The models are: 

Fine-Grain Multithreading. Only one thread issues instruc- 
tions each cycle, but it can use the entire issue width of the 
processor. This hides all sources of vertical waste, but does not 
hide horizontal waste, It is the only model that does not feature 
simultaneous multithreading. Among existing or proposed ar- 

chitectures, this is most similar to the Tera processor [ 3 ] ,  which 
issues one 3-operation LIW instruction per cycle. 

SM:Full Simultaneous Issue. This is a completely flexible 
simultaneous multithreaded superscalar: all eight threads com- 
pete for each of the issue slots each cycle. This is the least 
realistic model in terms of hardware complexity, but provides 
insight into the potential for simultaneous multithreading. The 
following models each represent restrictions to this scheme 
that decrease hardware complexity. 

SM:Single Issue,SM:Dual Issue, and SM:Four Issue. These 
three models limit the number of instructions each thread can 
issue, or have active in the scheduling window, each cycle. For 
example, in a SM:Dual Issue processor, each thread can issue 
a maximum of 2 instructions per cycle; therefore, a minimum 
of 4 threads would be required to fill the 8 issue slots in one 
cycle. 

SM:Limited Connection. Each hardware context is directly 
connected to exactly one of each type of functional unit. For 
example, if the hardware supports eight threads and there are 
four integer units, each integer unit could receive instructions 
from exactly two threads. The partitioning of functional units 
among threads is thus less dynamic than in the other models, 
but each functional unit is still shared (the critical factor in 
achieving high utilization). Since the choice of functional 
units available to a single thread is different than in our original 
target machine, we recompiled for a 4-issue (one of each type 
of functional unit) processor for this model. 

Some important differences in hardware implementation com- 
plexity are summarized in Table 4. Notice that the fine-grain model 
may not necessarily represent the cheapest implementation. Many 
of these complexity issues are inherited from our wide superscalar 
design rather than from multithreading, per se. Even in the SM:full 
simultaneous issue model, the inter-instruction dependence check- 
ing, the ports per register file, and the forwarding logic scale with 
the issue bandwidth and the number of functional units, rather than 
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Inter-inst 
Register Dependence Forwarding Scheduling 

Model Ports Checking Logic 

SM:Single Issue 
SM:Dual Issue 
SM:Four Issue M M H H 
SM:Limited M M M M No forwarding between FUs of same type; 

Scheduling independent of other threads. 

sc'heduling is independent of other FUs 
complex, highest performance 

Connection 
SM:Full Simultane- H H H 
ous Issue 
* We have modeled this scheme with all forwarding intact, but forwarding could be eliminated, requiring more threads for maximum performance 

Table 4: A comparison of key hardware complexity features of the various imodels (H=high complexity). We consider the number of' 
ports needed for each register file, the dependence checkingfor a single threaid to issue multiple instructions, the amount of forwarding 
logic, and the difficulty of scheduling issued instructions onto functional units. 

the number of threads. Our choiceof ten functional units seems rea- 
sonable for an 8-issue processor. Current 4-issue processors have 
between 4 and 9 functional units. The number of ports per register 
file and the logic to select instructions for issue in the four-issue 
and limited connection models are comparable to current four-issue 
superscalars; the single-issue and dual-issue are less. The schedul- 
ing of instructions onto functional units is more complex on all 
types of simultaneous multithreaded processors. The Hirata, et al., 
design [ 161 is closest to the single-issue model, although they sim- 
ulate a small number of configurations where the per-thread issue 
bandwidth is increased. Others [34, 17, 23, 61 implement models 
that are more similar to full simultaneous issue, but the issue width 
of the architectures, and thus the complexity of the schemes, vary 
considerably. 

4.2 The Performance of Simultaneous Multithreading 

Figure 3 shows the performance of the various models as a function 
of Ihe number of threads. The segments of each bar indicate the 
throughput component contributed by each thread. The bar-graphs 
show three interesting points in the multithreaded design space: fine- 
grained multithreading (only one thread per cycle, but that thread 
can use all issue slots), SM: Single Issue (many threads per cycle, 
but each can use only one issue slot), and SM: Full Simultaneous 
Issue (many threads per cycle, any thread can potentially use any 
issue slot). 

The fine-grain multithreaded architecture (Figure 3(a)) provides 
a maximum speedup (increase in instruction throughput) of only 
2.1 over single-thread execution (from 1.5 IPC to 3.2). The graph 
shows that there is little advantage to adding more than four threads 
in ithis model. In fact, with four threads, the vertical waste has 
beem reduced to less than 3%, which bounds any further gains 
beyond that point. This result is similar to previous studies [2,1, 19, 
14, 33, 311 for both coarse-grain and fine-grain multithreading on 
single-issue processors, which have concluded that multithreading 
is only beneficial for 2 to 5 threads. These limitations do not apply 
to simultaneous multithreading, however, because of its ability to 
exploit horizontal waste. 

]Figures 3(b,c,d) show the advantage of the simultaneous multi- 
threading models, which achieve maximum speedups over single- 

thread superscalar execution ranging from 3.2 to 4.2, with an issue 
rate as, high as 6.3 IPC. The speedups are calculated using the full 
simultaneous issue, I-thread result to represent the single-thread 
superscalar. 

With SM, it is not necessary for any single thread to be able to 
utilize the entire resources of the processorin order to get maximum 
or near-maximum performance. The four-issue model gets nearly 
the performance of the full simultaneous issue model, and even the: 
dual-issue model: is quite competitive, reaching 94% of full simulta- 
neous issue at 8 !threads. The limited connection model approaches 
full simu1taneou:s issue more slowly due to its less flexible schedul- 
ing. E k h  of these models becomes increasingly competitive with 
full simultaneous issue as the ratio of threads to issue slots increases. 

With the resuks shown in Figure 3(d), we see the possibility of 
trading the number of hardware contexts against hardware complex-. 
ity in other area!;. For example, if we wish to execute around four 
instructions per cycle, we can build a four-issue or full simultaneous 
machine with 3 to 4 hardware contexts, a dual-issue machine with 4 
contexts, a limited connection machine with 5 contexts, or a single- 
issue :machine with 6 contexts. Tera [3] is an extreme example of 
tradin,g pipeline complexity for more contexts; it has no forward.- 
ing in its pipelines and no data caches, but supports 128 hardware 
contexts. 

The increases in processorutilization are a direct result of threads 
dynamically sharing processor resources that would otherwise re- 
main idle much of the time; however, sharing also has negative 
effect:s. We see (in Figure 3(c)) the effect of competition for is- 
sue sl'ots and functional units in the full simultaneous issue model, 
where: the lowest priority thread (at 8 threads) runs at 55% of the 
speedof the highest priority thread. We can also observe the impact 
of sharing other system resources (caches, TLBs, branch predic- 
tion table); with full simultaneous issue, the highest priority thread, 
which is fairly immune to competition for issue slots and functional 
units, degrades significantly as more threads are added (a 35% slow- 
down at 8 threads). Competition for non-execution resources, then, 
plays nearly as !significant a role in this performance region as the 
competition for execution resources. 

Others have observed that caches are more strained by a multi- 
threaded worklalad than a single-thread workload, due to a decrease 
in locality [21, .33, 1, 311. Our data (not shown) pinpoints the ex- 
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Figure 3: Instruction throughput as a function of the number of threads. (a)-(c) show the throughput by thread priority for particular 
models, and (d) shows the total throughput for all threads for each of the six machine models. The lowest segment of each bar is the 
contribution of the highest priority thread to the total throughput. 

act areas where sharing degrades performance. Sharing the caches 
is the dominant effect, as the wasted issue cycles (from the per- 
spective of the first thread) due to I cache misses grows from 1% 
at one thread to 14% at eight threads, while wasted cycles due to 
data cache misses grows from 12% to 18%. The data TLB waste 
also increases, from less than 1% to 6%. In the next section, we 
will investigate the cache problem. For the data TLB, we found 
that, with our workload, increasing the shared data TLB from 64 to 
96 entries brings the wasted cycles (with 8 threads) down to 1%, 
while providing private TLBs of 24  entries reduces it to under 2%, 
regardless of the number of threads. 

It is not necessary to have extremely large caches to achieve 
the speedups shown in this section. Our experiments with signif- 
icantly smaller caches (not shown here) reveal that the size of the 
caches affects 1-thread and 8-thread results equally, making the to- 
tal speedups relatively constant across a wide range of cache sizes. 
That is, while 8-thread execution results in lower hit rates than 1- 
thread execution, the relative effect of changing the cache size is the 
same for each. 

In summary, our results show that simultaneous multithreading 
surpasses limits on the performance attainable through either single- 
thread execution or fine-grain multithreading, when run on a wide 

superscalar. We have also seen that simplified implementations of 
SM with limited per-thread capabilities can still attain high instruc- 
tion throughput. These improvements come without any significant 
tuning of the architecture for multithreaded execution; in fact, we 
have found that the instruction throughput of the various SM models 
is somewhat hampered by the sharing of the caches and TLBs. The 
next section investigates designs that are more resistant to the cache 
effects. 

5 Cache Design for a Simultaneous Multi- 
threaded Processor 

Our measurements show a performance degradation due to cache 
sharing in simultaneous multithreaded processors. In this section, 
we explore the cache problem further. Our study focuses on the 
organization of the first-level (Ll)  caches, comparing the use of 
private per-thread caches to shared caches for both instructions and 
data. (We assume that L2 and L3 caches are shared among all 
threads.) All experiments use the 4-issuemodel with up to 8 threads. 

The caches are specified as [total I cache size in KB][private or 
shared].[D cache sizelbrivate or shared] in Figure 4. For instance, 
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6 4 p . 6 4 ~  has eight private 8 KB I caches and a shared 64  KB data 
cache. Not all of the private caches will be utilized when fewer than 
eight threads are running. 

Figure 4 exposes several interesting properties for multithreaded 
caches. We see that shared caches optimize for a small number of 
threads (where the few threads can use all available cache), while 
private caches perform better with a large number of threads. For 
example, the 6 4 s . 6 4 ~  cache ranks first among all models at 1 thread 
and last at 8 threads, while the 6 4 p . 6 4 ~  cache gives nearly the 
opposite result. However, the tradeoffs are not the same for both 
instivctions and data. A shared data cache outperforms a private 
data cache over all numbers of threads (e.g., compare 6 4 p . 6 4 ~  with 
64p.64p), while instruction caches benefit from private caches at 8 
threads. One reason for this is the differing access pattems between 
instructions and data. Private I caches eliminate conflicts between 
different threads in the I cache, while a shared D cache allows 
a single thread to issue multiple memory instructions to different 
banks. 

_f__ 6 4 p . 6 4 ~  "'., 

+ 6 4 p . 6 4 ~  
L /  

I I I I 1 I I I 
1 2 3 4 5 6 7 8  

Number of Threads 

Figure 4: Results for the simulated cache configurations, shown 
relative to the throughput (instructions per cycle) of the 64s .64~ 
cache results. 

There are two configurations that appear to be good choices. 
Because there is little performance difference at 8 threads, the cost 
of optimizing for a small number of threads is small, making 6 4 s . 6 4 ~  
an attractive option. However, if we expect to typically operate with 
all or most thread slots full, the 6 4 p . 6 4 ~  gives the best performance 
in that region and is never worse than the second best performer with 
fewcr threads. The shared data cache in this scheme allows it to 
take advantage of more flexible cache partitioning, while the private 
instruction caches make each thread less sensitive to the presence of 
other threads. Shared data caches also have a significant advantage 
in a data-sharing environment by allowing sharing at the lowest level 
of the data cache hierarchy without any special hardware for cache 
coherence. 

6 Simultaneous Multithreading versus Single- 
Chip Multiprocessing 

As chip densities: continue to rise, single-chip multiprocessors will 
provide an obvious means of achieving parallelism with the available 
real estate. This section compares the performance of simultaneous 
multithreading to small-scale, single-chip multiprocessing (MP). On 
the organizational level, the two approaches are extremely similar: 
both have multiple register sets, multiple functional units, and high 
issue bandwidth 'on a single chip. The key difference is in the way 
those resources are partitioned and scheduled: the multiprocessor 
statically partitions resources, devoting a fixed number of functional 
units tto each thread; the SM processor allows the partitioning to 
change every cycle. Clearly, scheduling is more complex for an 
SM prsocessor; hmowever, we will show that in other areas the SM 
model requires fewer resources, relative to multiprocessing, in order 
to achieve a desired level of performance. 

For these experiments, we tried to choose SM and MP configu- 
rations that are reasonably equivalent, although in several cases we 
biased in favor of the MP. For most of the comparisons we keep all 
or most of the following equal: the number of register sets (i.e, the 
number of threads for SM and the number of processors for MP), the 
total h u e  bandwidth, and the specific functional unit configuration. 
A consequence of the last item is that the functional unit configu- 
ration is often optimized for the multiprocessor and represents an 
inefficient configuration for simultaneous multithreading. All ex- 
periments use 8 KB private instruction and data caches (per thread 
for SM, per processor for MP), a 256 KB 4-way set-associative 
shared second-level cache, and a 2 MB direct-mapped third-level 
cache. We want to keep the caches constant in our comparisons, 
and this (private and D caches) is the most natural configuration 
for the multiprocessor. 

We evaluate MPs with 1, 2 ,  and 4 issues per cycle on each pro- 
cessor. We evaluate SM processors with 4 and 8 issues per cycle; 
however we use the SM:Four Issue model (defined in Section 4.1) 
for all o f  our SM measurements (i.e., each thread is limited to four 
issues per cycle). Using this model minimizes some of the inherent 
compkxity diffecences between the SM and MP architectures. For 
examplie, an SM:Four Issue processor is similar to a single-threaded 
processor with 4 issues per cycle in terms of both the number of 
ports on each register file and the amount of inter-instruction de- 
pendence checking. In each experiment we run the same version 
of the 1)enchmark.s for both configurations (compiled for a 4-issue, 
4 functional unit processor, which most closely matches the MP 
configuration) on both the MP and SM models; this typically favors 
the MP. 

We ,must note that, while in general we have tried to bias the 
tests in favor of the MP, the SM results may be optimistic in two 
respects-the amount of time required to schedule instructions onto 
functionalunits, and the shared cache access time. The impact ofthe 
former., discussed in Section 2.1, is small. The distance between the 
loadlstore units and the data cache can have a large impact on cache 
access time. The: multiprocessor, with private caches and private 
loadlstore units, 'can minimize the distances between them. Our 
SM processor cannot do so, even with private caches, because the 
loadktore units are shared. However, two altemate configurations 
could eliminate this difference. Having eight load/store units (one 
private unit per thread, associated with a private cache) would still 
allow LIS to match MP performance with fewer than half the total 
number of MP fu.nctiona1 units (32 vs. 15). Or with 4 loadktore 
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Purpose of Test I Common Elements I SDecific Configuration I Throughuut (instructions/cvcle) 

Unlimited FUs: equal Test A: FUs = 32 
total issue bandwidth, Issue bw = 8 
equal number of register Re  Sets = 8 
sets (processors or Test B: FUs = 16 

Issue bw = 4 
Reg sets = 4 
Test C: FUs = 16 . Issue bw = 8 
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Re  sets = 4 
Unlimited FUs: Test A, Test D: 
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~~~~~ ~ 

lReg sets = 8 
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Figure 5:  Results for the various multiprocessor vs. simultaneous multithreading comparisons. The multiprocessor always has one 
functional unit of each type per processor. In most cases the SM processor has the same total number of each FU type as the MP. 

units and 8 threads, we could statically share a single cacheiload- 
store combination among each set of 2 threads. Threads 0 and 
1 might share one loadktore unit, and all accesses through that 
load/store unit would go to the same cache, thus allowing us to 
minimize the distance between cache and loadstore unit, while still 
allowing resource sharing. 

Figure 5 shows the results of our SM/MP comparison for various 
configurations. Tests A, B, and C compare the performance of the 
two schemes with an essentially unlimited number of functional 
units (FUs); i.e., there is a functional unit of each type available to 
every issue slot. The number of register sets and total issue band- 
width are constant for each experiment, e.g., in Test C, a 4 thread, 
8-issue SM and a 4-processor, 2-issue-per-processor MP both have 
4 register sets and issue up to 8 instructions per cycle. In these mod- 
els, the ratio of functional units (and threads) to issue bandwidth is 
high, so both configurations should be able to utilize most of their 
issue bandwidth. Simultaneous multithreading, however, does so 
more effectively. 

Test D repeats test A but limits the SM processor to a more 
reasonable configuration (the same 10 functional unit configura- 
tion used throughout this paper). This configuration outperforms 
the multiprocessor by nearly as much as test A, even though the 
SM configuration has 22 fewer functional units and requires fewer 
forwarding connections. 

In tests E and F, the MP is allowed a much larger total issue 
bandwidth. In test E, each MP processor can issue 4 instructions 
per cycle for a total issue bandwidth of 32 across the 8 processors; 
each SM thread can also issue 4 instructions per cycle, but the 8 
threads share only 8 issue slots. The results are similar despite 
the disparity in issue slots. In test F, the 4-thread, 8-issue SM 
slightly outperforms a 4-processor, 4-issue per processor MP, which 

has twice the total issue bandwidth. Simultaneous multithreading 
performs well in these tests, despite its handicap, because the MP is 
constrained with respect to which 4 instructions a single processor 
can issue in a single cycle. 

Test G shows the greater ability of SM to utilize a fixed number 
of functional units. Here both SM and MP have 8 functional units 
and 8 issues per cycle. However, while the SM is allowed to have 
8 contexts (8 register sets), the MP is limited to two processors (2 
register sets), because each processormust have at least 1 of each of 
the 4 functional unit types. Simultaneous multithreading's ability to 
drive up the utilization of a fixed number of functional units through 
the addition of thread contexts achieves more than 2 3  times the 
throughput. 

These comparisons show that simultaneous multithreading out- 
performs single-chip multiprocessing in a variety of configurations 
because of the dynamic partitioning of functional units. More im- 
portant, SM requires many fewer resources (functional units and 
instruction issue slots) to achieve a given performance level. For 
example, a single %thread, 8-issue SM processor with 10 functional 
units is 24% faster than the 8-processor, single-issue MP (Test D), 
which has identical issue bandwidth but requires 32 functional units; 
to equal the throughput of that 8-thread 8-issue SM, an MP system 
requires eight 4-issue processors (Test E), which consume 32 func- 
tional units and 32 issue slots per cycle. 

Finally, there are further advantages of SM over MP that are not 
shown by the experiments: 

Performance with few threads - These results show only the 
performance at maximum utilization. The advantage of SM 
(over MP) is greater as some of the contexts (processors) be- 
come unutilized. An idle processor leaves Up of an MP idle, 
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while with SM, the other threads can expand to use the avail- 
able resources. This is important when (1) we run parallel code 
where the degree of parallelism varies over time, (2) the perfor- 
mance of a small number of threads is important in the target 
environment, or (3) the workload is sized for the exact size of 
the machine (e.g., 8 threads). In the last case, a processor and 
all of its resources is lost when a thread experiences a latency 
orders of magnitude larger than what we have simulated (e.g., 
IO). 

o Granularity and flexibility of design - Our configuration op- 
tions are much richer with SM, because the units of design 
have finer granularity. That is, with a multiprocessor, we 
would typically add computing in units of entire processors. 
With simultaneous multithreading, we can benefit from the ad- 
dition of a single resource, such as a functional unit, a register 
context, or an instruction issue slot; furthermore, all threads 
would be able to share in using that resource. Our comparisons 
did not take advantage of this flexibility. Processor designers, 
taking full advantage of the configurability of simultaneous 
multithreading, should be able to construct configurations that 
even further out-distance multiprocessing. 

For these reasons, as well as the performance and complexity 
results shown, we believe that when component densities permit 
us to put multiple hardware contexts and wide issue bandwidth 
on a single chip, simultaneous multithreading represents the most 
efficient organization of those resources. 

7 Related Work 

We have built on work from a large number of sources in this 
paper. In this section, we note previous work on instruction-level 
parallelism, on several traditional (coarse-grain and fine-grain) mul- 
tithreaded architectures, and on two architectures (the M-Machine 
and the Multiscalar architecture) that have multiple contexts active 
simultaneously, but do not have simultaneous multithreading. We 
also discuss previous studies of architectures that exhibit simulta- 
neous multithreading and contrast our work with these in particular. 

The data presented in Section 3 provides a different perspective 
from previous studies on ILP, which remove barriers to parallelism 
(i.e. apply real or ideal latency-hiding techniques) and measure 
the resulting performance. Smith, et al., [28] focus on the effects 
of fetch, decoding, dependence-checking, and branch prediction 
limjitations on ILP; Butler, et al., [5] examine these limitations plus 
scheduling window size, scheduling policy, and functional unit con- 
figuration; Lam and Wilson [I 81 focus on the interaction of branches 
and ILP; and Wall [32] examines scheduling window size, branch 
prediction, register renaming, and aliasing. 

Previous work on coarse-grain [2, 27, 311 and fine-grain [28, 3, 
15,22, 191 multithreading provides the foundation for our work on 
simultaneous multithreading, but none features simultaneous issu- 
ing of instructions from different threads during the same cycle. In 
facl, most of these architectures are single-issue, rather than super- 
sca!lar, although Tera has LIW (3-wide) instructions. In Section 4, 
we extended these results by showing how fine-grain multithreading 
runs on a multiple-issue processor. 

In the M-Machine [7] each processor cluster schedules LIW in- 
structions onto execution units on a cycle-by-cycle basis similar to 
the Tera scheme. There is no simultaneous issue of instructions 

from ,multiple threads to functional units in the same cycle on indi- 
vidual clusters. Franklin's Multiscalar architecture [13, 121 assigns 
fine-grain threads to processors, so competition for execution re- 
sources (processors in this case) is at the level of a task rather than 
an indlividual ins#truction. 

Hirata, et al., [16] present an architecture for a multithreaded 
superscalar processor and simulate its performance on a parallel 
ray-tracing application. They do not simulate caches or TLBs, and 
their architecture has no branch prediction mechanism. They show 
speedups as high as 5.8 over a single-threaded architecture when 
using 8 threads. Yamamoto, et al., [34] present an analytical model 
of multithreaded superscalar performance, backedup by simulation. 
Their study models perfect branching, perfect caches and a homo- 
geneous workload (all threads running the same trace). They report 
increases in instruction throughput of 1.3 to 3 with four threads. 

Keckler and Dally [17] and Prasadh and Wu [23] describe archi- 
tectures that dynamically interleave operations from VLIW instruc- 
tions 'onto individual functional units. Keckler and Dally report 
speedups as hig,h as 3.12 for some highly parallel applications. 
Prasadh and Wu also examine the register file bandwidth require- 
ments for 4 threads scheduled in this manner. They use infinite 
caches and show a maximum speedup above 3 over single-thread 
execu'tion for parallel applications. 

Daddis and Tomg [6] plot increases in instruction throughput 
as a function of the fetch bandwidth and the size of the dispatch 
stack. The dispatch stackis the global instruction window that issues 
all fetched instructions. Their system has two threads, unlimited 
functiional units, and unlimited issue bandwidth (but limited fetch 
bandwidth). They report a near doubling of throughput. 

In contrast to these studies of multithreaded, superscalar architec.. 
tures, we use a ]heterogeneous, multiprogrammed workload based 
on the SPEC benchmarks; we model all sources of latency (cache, 
memory, TLB, branching, real instruction latencies) in detail. We 
also extend the previous work in evaluating a variety of models of 
SM execution. We look more closely at the reasons for the result- 
ing performance: and address the shared cache issue specifically. 
We go' beyond comparisons with single-thread processors and com-. 
pare simultaneous multithreading with other relevant architectures: 
fine-g.rain, superscalar multithreaded architectures and single-chip 
multiprocessors. 

8 Summai-y 

This paper examined simultaneous multithreading, a technique that 
allows, independent threads to issue instructions to multiple func- 
tional units in a single cycle. Simultaneous multithreading combines 
facilities available in both superscalar and multithreaded architec- 
tures. We have presented several models of simultaneous mul- 
tithreading and (compared them with wide superscalar, fine-grain 
multitlhreaded, and single-chip, multiple-issue multiprocessing ar-. 
chitectures. Our evaluation used execution-driven simulation based 
on a model extended from the DEC Alpha 21 164, running a multi- 
programmed workload composed of SPEC benchmarks, compiled 
for our architecture with the Multiflow trace scheduling compiler. 

Our results show the benefits of simultaneous multithreading 
when 'compared to the other architectures, namely: 

1 .  Given our model, a simultaneous multithreaded architec- 
ture, properly configured, can achieve 4 times the instruction 
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throughput of a single-threaded wide superscalarwith the same 
issue width (8 instructions per cycle, in our experiments). 

2. While fine-grain multithreading (i.e., switching to a new thread 
every cycle) helps close the gap, the simultaneous multithread- 
ing architecture still outperforms fine-grain multithreading by 
a factor of 2. This is due to the inability of fine-grain multi- 
threading to utilize issue slots lost due to horizontal waste. 

3. A simultaneous multithreaded architecture is superior in per- 
formance to a multiple-issue multiprocessor, given the same 
total number of register sets and functional units. Moreover, 
achieving a specific performance goal requires fewer hardware 
execution resources with simultaneous multithreading. 

The advantage of simultaneous multithreading, compared to the 
other approaches, is its ability to boost utilization by dynamically 
scheduling functional units among multiple threads. SM also in- 
creases hardware design flexibility; a simultaneous multithreaded 
architecture can tradeoff functional units, register sets, and issue 
bandwidth to achieve better performance, and can add resources in 
a fine-grained manner. 

Simultaneous multithreading increases the complexity of instruc- 
tion scheduling relative to superscalars, and causes shared resource 
contention, particularly in the memory subsystem. However, we 
have shown how simplified models of simultaneous multithreading 
reach nearly the performance of the most general SM model with 
complexity in key areas commensurate with that of current super- 
scalars; we also show how properly tuning the cache organization 
can both increase performance and make individual threads less 
sensitive to multi-thread contention. 
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